Note: You must complete and receive feedback on this assessment before moving on to submit Assessment 4.
Access the Mental Measurements Yearbook (see the Resources) or another appropriate resource, and review types of measures and assessments that are available and relevant to your research question.
Determine the types of measures and assessments that fit into your research proposal and write about them in a short paper. Your assessment should include the following:
Different variables are measured on different scales. Continuous variables have many possible values, such as age, weight, or even height. Discrete or categorical variables have only a few possible values, such as gender, marital status, or letter grade. Categorical variables that only have two possible values are called “dichotomous variables” because they are either one thing or the other, but nothing else.
In addition to these distinctions, there are also four levels of measurement that help identify the type of variable in use in a study and, therefore, have implications on the types of analysis that can be done.
Reliability of a measure is the degree to which it performs consistently. This is measured by correlating the first score with the second score—if the correlation is high, the reliability is high. There are four types of reliability.
Validity of a measure is the degree to which it measures what it says it is measuring. Does the test do what it is supposed to do? A valid test measures the behavior it intends to measure, rather than some other extraneous variable. For example, if we are studying healthy eating, and the way we decided to measure healthy eating is weight loss, is that really a valid measure of healthy eating? People who became anorexic would have a high score on healthy eating if their weight dropped, but would they really be eating healthy?
There are three types of validity:
There are many different types of tests that can measure many different aspects of the human experience—thoughts, behaviors, emotions, skills, knowledge, attitudes, and so on. Most tests are multiple choice, but some are forced response, and some may even be open ended. There are six major types of tests:
Collection of data is a very detailed and precise process. Errors in data collection can result in inaccurate results of a study, and that makes the entire process invalid. There are many procedures that make data collection an organized logical process so that you can maintain the integrity of the information and draw valid conclusions from your research.
It is essential that data be collected in an organized and careful way. Researchers have a responsibility to make sure that the data is protected, both in terms of confidentiality issues, as well as in terms of accuracy of the recording of the data so that the participants are not misrepresented, and that study’s results are valid.
Analyzing your data may seem daunting, but that is the point at which you can begin to see the fruits of your labor. Data analysis is what allows us to determine if our hypothesis is confirmed. Data can be analyzed in several ways, the two main ways being descriptive and inferential.
Descriptive statistics tell us the general characteristics of our data. Descriptive statistics can be presented in the form of measures of central tendency such as the mean (most common and useful), the median, or the mode. The mean is basically the average. What is the average score on an intelligence test? What is the average score on a test of anxiety or depression. The mean of your sample can then be compared either to another sample such as a control group that did not receive any treatment, or a normative group that the test creator has indicated to give researcher a source of comparison.
Descriptive statistics can also be presented in the form of measures of variability, such as range and standard deviation. Determining the variability of the data can give you an idea of how your data is dispersed. Are a lot of people scoring on the high end of the scale? Are most of the participants scoring very low? You can get the same mean from two vastly different ranges of data, so the range gives us another important picture of our sample.
The standard deviation simply tells us the average amount of variation each score has from the mean. Understanding how scores vary, can help us when comparing them to other scores, either those of another group in our sample, or those in the general population.
Inferential statistics are the tools we use to compare our data to determine the results of our study. Inference is the leap we make from the results of our study with our sample to the population as a whole. Inference is what we use to generalize our results.
The central limit theorem tells us that as long as our sample is greater than thirty, and the distribution of the sample is normal, we can infer that our results can be applied to the larger population. The idea of statistical significance also plays into this picture because while ideally, we would like for our sample to be the perfect representation of the population, it may not be, and there may be other sources of error as well—in the way the data was collected, in the way the data was recorded, and so on.
There is some degree of risk in the inference that your results are in fact due only to the variables in your study and not chance or error, and this risk is dealt with by using statistical significance to interpret the data. By stating the level of statistical significance, you are stating your degree of confidence in your result. A statistical significance of .05 means that you are accepting that there is a 5 percent chance that your results are due to some form of error.
A number of tests of significance are available for use in analyzing your data. The t test is the most common test and can be used to test the difference between two groups. Often though, studies are more complex, involving multiple variables, so an Analysis of Variance (ANOVA) can be used to further analyze the variables in question. Figure 8.3 in the Salkind text provides an excellent primer for choosing the appropriate statistic for the types of data you are analyzing.
Further discussion of statistics is beyond the scope of this course but is covered in great depth in an actual statistics course.
While it may be the goal of researchers to find statistical significance, that may not have much meaning in the end. A study that shows a girl’s scores are significantly lower than boy’s score on a measure of assertiveness means nothing unless we make some interpretation of the meaningfulness of those results. What does that mean for girls? How does that play out clinically, in real life? How does it impact girls’ lives, relationships, and self-esteem?
Researchers must be careful not to overextend the meaning of one result of one study, but a body of research in one area demonstrating similar results in different settings can help a researcher come to meaningful conclusions about their data and spur additional research aimed at rectifying a situation or helping a certain group overcome a certain characteristic or circumstance. This is the real reason for research: to better understand, so that we can help.